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Abstract A multivariate data modelling problem consists of a number of nodes
with associated function values. Increase in multivariance urges us to use divide-
and-conquer algorithms in modelling process of these problems. High dimensional
model representation based methods can partition a given multivariate data set into
less-variate data sets and have the ability of building a model through these partitioned
data sets. Generalized HDMR (GHDMR) is one of these methods and it is known that it
works well for dominantly and purely additive natures. Piecewise Generalized HDMR
is an alternative method and was developed to increase the efficiency of GHDMR but
the performance of the method for modelling multiplicative natures is still not suf-
ficient and acceptable. This work aims to develop a new piecewise method based
on enhanced multivariance product representation which works well for representing
multiplicative natures.

Keywords High dimensional model representation · Multivariate data modelling ·
Interpolation · Multidimensional problems · Approximation

1 Introduction

Dealing with multivariate data including a number of nodes and the associated function
values is an important issue in many research areas of basic sciences and engineering.
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As the number of independent variables and the number of nodes increase, it becomes
hard to determine an analytical structure for the problem because of mathematical
and computational incapabilities. To this end, high dimensional model representation
(HDMR) philosophy can be used as a divide-and-conquer method to bypass these
disadvantages and to construct a new representation for the problem under consid-
eration [1,2]. The method has a finite expansion composed of mutually orthogonal
less-variate components of the given multivariate function and aims to uniquely deter-
mine the general structure of each component under a product type weight and a
number of vanishing conditions defined through multiple integrations [1,2]. This phi-
losophy is used to partition a given multivariate data set into less-variate data sets such
as univariate, bivariate or higher variate data sets. However, the product type weight
need in HDMR brings a restriction in multivariate data partitioning such as the given
data set should have an orthogonal geometry. That is, the function values at all possible
nodes of the problem domain should be known for the modelling process [3]. On the
other hand, it is obvious that we cannot know all function values in most cases. This
results in the development of another HDMR based method for partitioning process
of multivariate data sets in which the function values are known only at arbitrarily
distributed nodes of the problem domain.

For this purpose, Generalized HDMR (GHDMR) method was developed under a
general type weight [4]. This method uses the standard HDMR expansion. First, the
HDMR components of the general weight are obtained and then the GHDMR compo-
nents of the given problem are determined. The HDMR and GHDMR methods use the
same finite expansion which has an additive nature. Hence, as it is expected, the numer-
ical implementations show that both methods work well in modelling dominantly and
purely additive natures while the performance of the method becomes insufficient for
the multiplicative natures [3,4]. Piecewise GHDMR is another method that makes
this philosophy a better working algorithm for dominantly and purely multiplicative
structures [5]. This method splits the domain into subdomains and builds an analytical
structure for each subdomain which correponds to a piecewise system. However, it
is still needed to develop a new method to get better representations for modelling
multiplicative natures.

This work aims to take enhanced multivariance product representation (EMPR)
into consideration for our modelling process [6]. This method provides a better ana-
lytical structure as the representation of a multivariate data modelling problem having
multiplicative nature by inserting the GHDMR features into its algorithm [7]. The
main purpose of this study is to improve the performance of the Generalized EMPR
(GEMPR) method [7]. To this end, the proposed method is Piecewise GEMPR which
splits the problem domain into subdomains, applies the steps of the new algorithm
to each subdomain and constructs a piecewise structure by taking the representations
obtained in each subdomain into consideration.

The HDMR philosophy is also used in modelling various scientific and engineering
problems by many other scientists. Some of these research areas are about reliability
analysis [8], helicopter aeroelastic analysis [9], laminar burning velocity [10], gen-
eral formulation of HDMR component functions [11], random sampling [12], weight
optimization [13], sensitivity analysis [14,15] and decision making [16].
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The paper is organized as follows. The Sect. 2 gives the multivariate data descrip-
tions that will help to define the data modelling problem. The Sect. 3 is about the math-
ematical background of the HDMR philosophy. The details of the GEMPR method are
given in the Sect. 4 while the Sect. 5 covers Piecewise Generalized EMPR which is the
proposed method of this work. The numerical implementations to test the performance
of our new method are included in the Sect. 6. The Sect. 7 discusses the concluding
remarks of the work.

2 Problem definition

This work aims to determine a structure as the analytical model of a given multivariate
data. This multivariate data can be defined as

dk ≡
(
ν

(k)
1 , . . . , ν

(k)
N , ϕk

)
, ϕk ≡ f

(
ν

(k)
1 , . . . , ν

(k)
N

)
, 1 ≤ k ≤ m (1)

where N and m stand for the number of independent variables and the number of
the nodes that describe the given problem, respectively. This data set is also called
“training data set” from which our method learn the problem and construct an analytical
structure.

It is assumed that a testing data set is also given in the problem to examine the
performance of the proposed method of this work. The general definition of this set
can be written as

T� ≡
(
η

(�)
1 , . . . , η

(�)
N

)
, 1 ≤ � ≤ t (2)

where t is the total number of testing nodes. The original function value of each testing
node will be compared with the function value obtained through our new method as
the performance evaluation process. For this purpose, relative error formula is used in
numerical implementations.

3 Mathematical background

The HDMR method has a finite expansion to express a given multivariate function,
f (x1, . . . , xN ), in terms of some functions having less number of independent vari-
ables. This expansion can be given as

f (x1, . . . , xN )= f0+
N∑

i1=1

fi1(xi1)+
N∑

i1,i2=1
i1<i2

fi1i2(xi1 , xi2)+· · ·+ f1...N (x1, . . . , xN )

(3)

where N stands for the number of independent variables [1]. The most important
task in the HDMR philosophy is to uniquely obtain the right hand side components
of the above expansion under a product type weight with predefined orthogonality
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conditions [1,2]. The product type weight prerequisite of HDMR restricts us to par-
tition a multivariate data set into less variate data sets, that is, the fuction values
at all possible nodes of the problem domain are needed to be known. However,
the real life problems have multivariate training data set whose nodes are only a
small subset of the whole problem domain. This makes HDMR unemployable on
these types of data modelling problems. The GHDMR method uses a general weight
function instead of a product type weight to bypass the mentioned disadvantage of
HDMR [4]. To this end, the first step is to write the HDMR expansion of the general
weight as

W(x1, . . . , xN )=W0+
N∑

i1=1

Wi1(xi1)+
N∑

i1,i2=1
i1<i2

Wi1i2(xi1 , xi2)+· · ·+W1...N (x1, . . . , xN )

(4)

To find the general structure of each HDMR component of the general weight function,
the following auxiliary product type weight is defined with normalization criteria

Ω(x1, . . . , xN ) ≡
N∏

j=1

Ω j (x j ),

b j∫

a j

dx jΩ(x j ) = 1 (5)

A normalization criterion is also defined for the general weight since the HDMR
philosophy requires normalized weights in its algorithm [4]

b1∫

a1

dx1 · · ·
bN∫

aN

dxN

⎛
⎝

N∏
j=1

Ω j (x j )

⎞
⎠W (x1, . . . , xN ) = 1 (6)

To determine the HDMR components of the general weight function, the following
orthogonality conditions are defined [4]

bi�∫

ai�

dxi�Ωi� (xi� )Wi1...ik (xi1 , . . . , xik )=0, 1≤k ≤ N , 1≤�≤k, 1≤ i1 < · · ·< ik ≤ N

(7)

The general structure of the constant component, W0 is obtained by using the following
operator

I0 F(x1, . . . , xN ) ≡
b1∫

a1

dx1Ω1(x1) · · ·
bN∫

aN

dxN ΩN (xN )F(x1, . . . , xN ) (8)

123



2658 J Math Chem (2013) 51:2654–2667

where F(x1, . . . , xN ) is an arbitrary square integrable multivariate function. When
the above operator is applied to the both sides of (4) under the normalization and
orthogonality conditions given in (6) and (7), the following result for W0 is obtained [4]

W0 = 1 (9)

Since the proposed method needs only the constant HDMR component of the general
weight function, the structure of higher variate components are not included in this
section.

4 The Generalized EMPR method

The EMPR method has the following finite expansion

f (x1, . . . , xN ) = f0

N∏
j=1

s j (x j ) +
N∑

i1=1

fi1(xi1)

N∏
j=1
j �=i1

s j (x j ) +
N∑

i1,i2=1
i1<i2

fi1i2(xi1 , xi2)

×
N∏

j=1
j �=i1,i2

s j (x j ) + · · · + f1...N (x1, . . . , xN ) (10)

where each s j (x j ) function is called “support function” and N is the number of inde-
pendent variables of the given multivariate function [6]. The method aims to construct
a representation for the given analytical structure. In this sense, the selection of the
support functions and the determination of the structure of the EMPR components
appearing at the right hand side of the EMPR expansion are the main parts of the pro-
posed algorithm of this work. This section covers the determination of the GEMPR
components under the implicit form of the support functions. The selection process
of these support functions is given in the next section.

To determine the general structure of each GEMPR component, normalization crite-
ria on support functions and vanishing conditions under the general weight, auxiliary
weight and the support functions for the mentioned components are defined as the
first two steps of the algorithm [7]. The normalization criteria under the product type
weight in EMPR method is defined as [6]

bi∫

ai

dxiΩi (xi )si (xi )
2 = 1, 1 ≤ i ≤ N (11)

The normalization criteria on support functions under the general weight can be
obtained through the following N -tuple integration

b1∫

a1

dx1 · · ·
bN∫

aN

dxN W (x1, . . . , xN )Ωi (xi )si (xi )
2 = 1, 1 ≤ i ≤ N (12)
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while the vanishing conditions that help us to determine the GEMPR components of
the expansion given in (10) are defined as

b1∫

a1

dx1 · · ·
bN∫

aN

dxN

⎛
⎝

N∏
j=1

Ω j (x j )

⎞
⎠
⎛
⎝

N∏
j=1

s j (x j )
2

⎞
⎠W (x1, . . . , xN ) fi (xi ) = 0 (13)

where 1 ≤ i ≤ N .
The I0 operator given in (8) can be rewritten for the GEMPR case as

I0 F(x1, . . . , xN )≡
b1∫

a1

dx1Ω1(x1)s1(x1) · · ·
bN∫

aN

dxN ΩN (xN )sN (xN )F(x1, . . . , xN )

(14)

This operator is used as follows to determine the constant GEMPR component of the
given multivariate function

I0 [W (x1, . . . , xN ) f (x1, . . . , xN )] = I0

⎡
⎢⎢⎣

⎛
⎝W0 +

N∑
i1=1

Wi1(xi1) + · · ·
⎞
⎠

×

⎛
⎜⎜⎝ f0

N∏
j=1

s j (x j ) +
N∑

i1=1

fi1(xi1)

N∏
j=1
j �=i1

s j (x j ) + · · ·

⎞
⎟⎟⎠

⎤
⎥⎥⎦ (15)

When the relations (11), (12), (13) and (14) are taken into consideration, the constant
component is obtained as

f0 =
b1∫

a1

dx1Ω1(x1)s1(x1) · · ·
bN∫

aN

dxN ΩN (xN )sN (xN )W (x1, . . . , xN ) f (x1, . . . , xN )

(16)

Since it is known that the univariate GHDMR components are the unknowns of a
system of linear equations which has sometimes no solutions because of linearly
dependent equations [4] and the GEMPR method has a similar philosophy with
GHDMR [7], this work aims to use only the constant component to bypass this dis-
advantage and to reduce the mathematical and computational complexity.

In addition, the main purpose here is to construct a model for a given multivariate
data. In this sense, we need to define a general weight which has the ability of taking
each training node with its associated function value into consideration in the mod-
elling process [4]. To this end, the following Dirac delta type weight is selected as the
general weight function
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W (x1, . . . , xN ) ≡
m∑

k=1

αkδ
(

x1 − ν
(k)
1

)
· · · δ
(

xN − ν
(k)
N

)
(17)

where αk parameters are used for giving different importance to each individual datum.
Relation (6) gives the following constraint on these αk parameters

m∑
k=1

αkΩk = 1, Ωk ≡
N∏

j=1

Ω j

(
ν

(k)
j

)
, 1 ≤ k ≤ m (18)

The relation given in (16) can be reorganized by inserting the weight function given
in (17) and the constant GEMPR component for the data partitioning procedure is
obtained as

f0 =
m∑

k=1

αkΩkskϕk, sk ≡
N∏

j=1

s j

(
ν

(k)
j

)
, 1 ≤ k ≤ m (19)

To this end, the following constant GEMPR approximant is obtained as the approxi-
mation to the original function under consideration

f (x1, . . . , xN ) ≈ π0(x1, . . . , xN ) = f0

N∏
j=1

s j (x j ) (20)

The other important case is to select appropriate support functions to get a better
approximation through the constant approximant for the given multivariate data mod-
elling problem. There are no rules or algorithms to obtain the best support function
structures for a given problem in literature. Besides, there is an experimental work
about the influences of these support functions on the representation of a given analyt-
ical structure [6]. Our work is the first study in developing a new procedure to identify
support functions that improves the quality of the constant EMPR approximant. This
procedure is given in the next section which also covers the proposed method of this
paper.

5 The Piecewise Generalized EMPR method

This work proposes a new algorithm based on GEMPR method which splits the whole
domain of the given problem into subdomains and obtains an analytical structure in
each subdomain. This new algorithm is called “Piecewise Generalized EMPR”. The
steps of this algorithm can be itemized as follows:

• Specify the total number of independent variables, N , of the given problem.
• Specify the total number of training nodes, m, of the given problem.
• Specify the domain of each independent variable as

xi ∈ [ai , bi ] , 1 ≤ i ≤ N (21)
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where a and b values stand for the minimum and the maximum values that the
related independent variable can take.

• Find the number of different values that each independent variable can take in the
problem domain and assign to n1, n2, . . . , nN to be used in the support function
determination process.

• Identify the total number of subintervals selected for the independent variables as
z1, z2, . . . , zN .

• Determine the subintervals for each independent variable.

x (1)
i ∈

[
c(1)

i , c(2)
i

)
, x (2)

i ∈
[
c(2)

i , c(3)
i

)
, · · · , x (zi )

i ∈
[
c(zi )

i , c(zi +1)
i

]
,

c(1)
i ≡ ai , c(zi +1)

i ≡ bi , 1 ≤ i ≤ N (22)

The interval of each independent variable is splitted into equal subintervals.
• Construct the subdomains of the whole problem domain through the cartesian

product of the subintervals of the independent variables

D (ρ) ≡ x ( j1)
1 × x ( j2)

2 × · · · × x ( jN )
N ,

1 ≤ ρ ≤ ζ 1 ≤ j1 ≤ z1, · · · , 1 ≤ jN ≤ zN , ζ ≡ z1 × · · · × zN (23)

where ζ is the total number of the subdomains.
• Build the training data sets of each subdomain by taking the subintervals of each

independent variable into consideration.
• Define an auxiliary weight function. In this work, the auxiliary weight is selected

same as given in the study about GHDMR method [4]

Ω(x1, . . . , xN ) =
N∏

j=1

1

b j − a j
(24)

Since the structure of this auxiliary weight depends on the minimum and maximum
values that are included in the domain that is under consideration, the weight should
be rewritten as follows for each subdomain

Ω(x1, . . . , xN )(ρ) =
N∏

j=1

1

ω
(ρ)
j − θ

(ρ)
j

, 1 ≤ ρ ≤ ζ (25)

where ω
(ρ)
j and θ

(ρ)
j are corresponding to the upper and lower bounds of the related

independent variable of the related subdomain, respectively [5].
• Select the support function structures. The most appropriate support function selec-

tion process is an important issue for EMPR based methods. When the analytical
structure which is the model of the given problem is known, the support functions
for that problem can be selected parallel to the factors of the given analytical struc-
ture [6]. However, this work aims to construct an analytical model of a problem in
which some nodes of the problem domain with the associated function values are
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given, that is, the analytical structure is asked to be determined. In this sense, one
way to select the most powerful support functions that increases the performance
of the EMPR based method is to develop an algorithm for the optimization process
of support functions. This results in finding the solution of a nonlinear equations
system which requires a complex mathematical and computational approach to
get the results. Imposing a specific support function structure to the EMPR based
method to model the given problem can be the second way of support function
determination process. These structures may be polynomial, exponential, logarith-
mic and trigonometric. To this end, the following sets are specified for the support
function families

S1 ≡
{

s j (x j ) = (1 + x j
)n j −1

, 1 ≤ j ≤ N
}

S2 ≡ {s j (x j ) = sin
(
x j
)
, 1 ≤ j ≤ N }

S3 ≡ {s j (x j ) = cos
(
x j
)
, 1 ≤ j ≤ N }

S4 ≡ {s j (x j ) = exj , 1 ≤ j ≤ N}
S5 ≡ {s j (x j ) = ln

(
x j
)
, 1 ≤ j ≤ N }

S6 ≡ {s j (x j ) = x j , 1 ≤ j ≤ N }
S7 ≡ {s j (x j ) = 1, 1 ≤ j ≤ N }
S8 ≡ {s j (x j ) = βx j , β = 2, 3, . . . , 1 ≤ j ≤ N } (26)

where n1, n2, . . . , nN are obtained in Step 4.
• Run the following steps for each support function family given above.
• Evaluate the constant GEMPR component and the related approximant for each

subdomain by taking the relations (19) and (20) into consideration. To this end, a
constant approximant is obtained in each subdomain as

π0(x1, . . . , xN )(ρ) = f (ρ)
0

N∏
j=1

s j (x j ), 1 ≤ ρ ≤ ζ (27)

where f (1)
0 , f (2)

0 , . . . , f (ζ )
0 stand for the constant component of the first, second and

the other subdomains, respectively since there may exist ζ number of subdomains
in a given problem. Hence, we have a piecewise structure as the model of our
problem. This can be represented by rewriting the relation (27) as

π0(x1, . . . , xN ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (1)
0

∏N
j=1 s j (x j ), (x1, x2, . . . , xN ) ∈ D (1)

f (2)
0

∏N
j=1 s j (x j ), (x1, x2, . . . , xN ) ∈ D (2)

...

f (ζ )
0

∏N
j=1 s j (x j ), (x1, x2, . . . , xN ) ∈ D (ζ )

(28)

• Evaluate the function value of each training node by using the constant Piecewise
Generalized EMPR approximant obtained in the previous step as given in (28).
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• Obtain the relative error value of each approximant determined by using different
support function families given in (26).

• The support function will be selected by looking for the case in which the smallest
relative error value obtained for the training process through the constant Piecewise
Generalized EMPR approximant.

• Use the approximant having the smallest relative error in finding the function
values of the testing nodes.

6 Numerical implementations

Several multivariate data modelling problems are constructed through a number of
testing functions to examine the performance of the Piecewise Generalized EMPR
method proposed in this work. In addition, these problems will allow us to com-
pare the performance of our new method with GHDMR, Piecewise GHDMR and
GEMPR performances. The evaluations are done by using MuPAD [17] within 20-
digits precision. The data preparation process is executed through Perl [18] scripts.
These Perl scripts organize the training data set to be easily used in MuPAD
scripts.

The testing functions are selected as

f1(x1, . . . , x5) =
5∏

i=1

xi , f2(x1, . . . , x5) =
[

5∑
i=1

xi

]10

,

f3(x1, . . . , x5) =
[

5∑
i=1

xi

]7

, f4(x1, . . . , x5) =
[

5∑
i=1

xi

]6

,

f5(x1, . . . , x5) =
[

5∑
i=1

xi

]5

, f6(x1, . . . , x5) =
5∑

i=1

xi , (29)

f7(x1, . . . , x5) = e

5∑
i=1

xi
, f8(x1, . . . , x5) = sin

(
5∏

i=1

xi

)
,

f9(x1, . . . , x5) = sin

(
5∑

i=1

xi

)
, f10(x1, . . . , x5) =

[
cos

(
5∑

i=1

xi

)]3

where each has 5 independent variables. Each independent variable can take values
from unit interval, [0, 1], for simplicity and generality while the independent variables,
x1, x2, x3, x4 and x5 take 5, 5, 4, 8, and 5 different values, respectively. This results in
the following information needed to generate the first support function of the related
family

n1 = 5, n2 = 5, n3 = 4, n4 = 8, n5 = 5 (30)
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Table 1 Average relative error values for the training part

GHDMR PGHDMR GEMPR PGEMPR

N f1 0.3082471450 0.1059598420 0.0647762246 0.0516067839

N f2 0.4497975828 0.2007505725 0.3097779747 0.1620777654

N f3 0.2684661626 0.1281011802 0.1522173606 0.0916295342

N f4 0.2120456156 0.1046347004 0.1570680403 0.1029420970

N f5 0.1514523942 0.0818049184 0.2068359074 0.1284423928

N f6 0.0 0.0153817367 0.0305884685 0.0150725791

N f7 0.0292018860 0.0288846951 0.0051703702 0.0047151743

N f8 0.3090712351 0.1077620653 0.0568295004 0.0515774525

N f9 0.0294573207 0.0116139448 0.0519885993 0.0278674899

N f10 0.4859548271 0.2210190802 0.4224658408 0.2197058837

while the number of subintervals of each independent variable is as

z1 = 2, z2 = 2, z3 = 2, z4 = 2, z5 = 2 (31)

which gives totally 32 subdomains for the given problems. We must be careful
about our decision on the number of these subintervals specified for each indepen-
dent variable. If the total number of training nodes of given problem in a subdo-
main is very small, then this may cause a bad approximation for the corresponding
subdomain.

We assume that we have 1,000 nodes with associated function values in each data
modelling problem and we use 700 nodes of this data set in our training data set while
300 nodes are left for the testing data set. Both training and testing data sets are con-
structed randomly through a Perl script written by the authors. The performance of the
proposed method of this study is examined by executing its algorithm for 30 randomly
constructed multivariate data modelling problems through each testing function given
in (29). The relative error for each execution of each problem is evaluated and then an
average relative error value is obtained for each testing function.

When we run the Piecewise Generalized EMPR algorithm for each testing function
given in (29), the support functions S6, S1, S1, S1, S1, S8 (β = 2), S4, S2, S7 and S1
are obtained for modelling the data sets constructed through the testing functions
f1, f2, f3, f4, f5, f6, f7, f8, f9 and f10, respectively. It is observed that some of the
support functions are not used for the given testing functions. This does not mean that
we will not need these support functions in other implementations. One may remove
those support functions from the list given in (26) or insert some new structures to
have a more detailed list. When the best appropriate support function determination
process finishes, the piecewise analytical structure is obtained as the model of the given
testing function. This piecewise function can then be used to evaluate the function
value at the given testing node of the multivariate data modelling problem under
consideration.
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Table 2 Average relative error values for the testing part

GHDMR PGHDMR GEMPR PGEMPR

N f1 0.3095432620 0.1073527460 0.0657628930 0.0560283091

N f2 0.4532413638 0.2128220358 0.3206331405 0.1676329180

N f3 0.2781259189 0.1365285378 0.1580577570 0.0945007450

N f4 0.2159593689 0.1099058725 0.1609143515 0.1044185505

N f5 0.1585280015 0.0856824499 0.2091417497 0.1299247680

N f6 0.0 0.0163393383 0.0311006072 0.0153576375

N f7 0.0304306026 0.0304236412 0.0051703703 0.0048594242

N f8 0.3148471414 0.1081448027 0.0587309701 0.0553526190

N f9 0.0311129911 0.0122045493 0.0528750921 0.0291392325

N f10 0.4987139635 0.2295387333 0.4448768481 0.2210190802

Table 1 shows the average relative error values for the training process of each
testing function over 30 random runs. The error values in boldface stand for the best
result obtained through the methods used in comparison. The results indicate that the
Piecewise Generalized EMPR (PGEMPR) method which is the proposed method of
this study gives the best approximation for functions having dominantly or purely
multiplicative nature. These functions stand for the testing functions, f1, f2, f3 and
f4. The performance of the method gets better while the multiplicativity dominance
increases. In addition, the proposed method also works better for exponential func-
tions, trigonometric functions whose argument is of type multiplicative nature and
the powers of trigonometric functions. The testing functions, f7, f8 and f10 are used
for these mentioned cases. On the other hand, the GHDMR method works well for
the testing function, f6 which has purely additive nature while Piecewise Generalized
HDMR (PGHDMR) gets better approximations for dominantly additive natures and
trigonometric functions that have arguments of type additive structure. The testing
functions, f5 and f9, correspond to these two cases, respectively. The results obtained
through the GEMPR method shows that we do not need to use that method for any
case if we use the proposed method of this work. Our new method works better than
GEMPR for all cases.

The discussions for the results of Table 1 are also true for the testing part as it is
seen in Table 2. The best values are again boldface highlighted. The performance of
the methods act same as we examine in the training part. This means that if the method
is successful in learning the analytical model of the given multivariate data modelling
problem from its training nodes then it can estimate the function value of the testing
nodes of the problem by using that analytical model successfully.

Another important point is the stability of the proposed method which can be
measured by evaluating the standard deviation value of each error value set obtained
for each testing function. These values are given in Table 3. It can be examined that
the results are very close to 0 which means the proposed method is very stable, that
is, in each run through 30 randomly constructed problems the obtained relative error
value is very closed to the others.
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Table 3 Standard deviation values of the testing results

GHDMR PGHDMR GEMPR PGEMPR

N f1 0.0196079741 0.0243787735 0.0484859645 0.0101366172

N f2 0.0357442673 0.0390292083 0.0245028233 0.0220215646

N f3 0.0204738391 0.0207787245 0.0192134006 0.0108541888

N f4 0.0135314004 0.0125522265 0.0122305682 0.0090082536

N f5 0.0115623714 0.0076963753 0.0132226753 0.0084918925

N f6 0.0 0.0018559786 0.0023296255 0.0008396358

N f7 0.0052065811 0.0026775012 0.0015710623 0.0007310763

N f8 0.0218830030 0.0168249505 0.0349838160 0.0078625837

N f9 0.0014702622 0.0010809233 0.0035254067 0.0017681133

N f10 0.0175420259 0.0283769039 0.0251365072 0.0156985948

7 Concluding remarks

An analytical structure determination process for multivariate data modelling problems
is an important concern in many research areas. One way for this purpose is to use
GHDMR method which is a divide-and-conquer algorithm. The main philosophy of
that method is to partition the given multivariate data set into univariate data sets and
then interpolate these univariate data sets instead of interpolating a single multivariate
data set. This reduces the complexity of the modelling process. Because GHDMR uses
the HDMR expansion which is of type additive nature, the method works well for the
multivariate data modelling problems having dominantly or purely additive nature. As
the multiplicativity nature of the given problem becomes dominant, the performance of
the method becomes poor. This work proposes a new method which is called Piecewise
Generalized enhanced multivariance product representation (PGEMPR) to overcome
this disadvantage.

Enhanced multivariance product representation (EMPR) is a recently developed
method to represent multivariate functions in terms of less variate functions to reduce
the mathematical and computational complexities. The support functions appearing
in the expansion of EMPR let the method works well for especially functions having
dominantly or purely multiplicative nature. Since EMPR is a multivariate function
representation method, this technique can also be used for multivariate data modelling
process. In this work, we develop a new EMPR based method which improves the
performance of classical EMPR algorithm and has the ability of partitioning a given
multivariate data into less variate data sets to obtain an approximate analytical struc-
ture as the model of the given data modelling problem. To construct this type of an
algorithm we took the GHDMR philosophy into consideration and developed GEMPR
method for data partitioning. The proposed method of this work is a piecewise based
GEMPR which increases the performance level of GEMPR in data modelling. The
determination process of the support functions affects the performance of the pro-
posed method directly. The studies on optimizing these support functions show us
that we should solve nonlinear equations system which is not preferred in numerical
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implementations. To bypass this disadvantage we propose a more simple but working
algorithm for obtaining appropriate support functions to model the given problem.
The numerical results show us that this algorithm allows us to get acceptable approx-
imations through Piecewise Generalized HDMR and to have better and stable results
when compared with the other techniques appearing in the literature.
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